O valor da gestão de dados na tomada de decisão na indústria avícola
O valor da gestão de dados na tomada de decisão na indústria avícola
Da mesma maneira que vários outros negócios do setor primário, a atividade avícola está cada vez mais competitiva em todos os seus segmentos. Desta forma, para manter-se e/ou crescer de maneira sustentável neste negócio, é preciso que a gestão produtiva, comercial, econômica e financeira seja a melhor possível.
Os dados por si não geram valor. Saber interpretar, analisar e extrair respostas dos dados é onde os gestores de companhias avícolas realmente deveriam focar a atenção. E tudo começa com fazer as perguntas corretas (o que quero saber?). A definição de quais serão os indicadores de performance (KPIs) que nortearão a tomada de decisões determinará as variáveis que deverão fazer parte da composição da base de dados a ser utilizada. Obviamente a qualidade da base de dados passa a ser condição básica e essencial para que possa ser utilizada na geração das respostas analíticas esperadas.
Uma boa base de dados pode ser considerada aquela que atende aos 6 Vs: volume, variedade, velocidade, veracidade, valor e variabilidade. Quanto mais importante o indicador para a tomada de decisões, maior é a importância da qualidade dos dados relacionados com o mesmo. Exemplificando, se o peso corporal é um importante indicador para a tomada de decisões, temos que obedecer a um procedimento básico na geração e utilização dos dados relacionados com essa variável:
Com base nas variáveis contidas na base de dados, podemos gerar 4 tipos de relatórios analíticos que didaticamente podem ser descritos de acordo com a figura abaixo:
A análise descritiva informa o estado atual do indicador em observação, utilizando os dados dos parâmetros relacionados à mesma. Em nosso exemplo do peso corporal, teríamos o peso médio e a percentagem de uniformidade ou o coeficiente de variação, atual e/ou comparativos com padrões e metas. Estas informações podem ser demonstradas em tabelas ou gráficos, em painéis de controle customizáveis a cada perfil de usuário. A análise diagnóstica permite a compreensão das relações com outras variáveis da base de dados, possibilitando a identificação da possibilidade de causa-efeito entre as mesmas. Nesta análise, poderíamos verificar se os pesos corporais estão relacionados com as instalações (localização/ tipo/ configuração da ambiência), sazonalidade (temperaturas/ umidades/etc.), lote (fornecedor/ genética/ idade da matriz etc.) e demais variáveis produtivas ou não produtivas. As correlações podem ser medidas por unidades como o R2 (coeficiente de correlação) e as relações de causa-efeito ilustradas, por exemplo como diagrama de Ishikawa.
A análise preditiva proporciona uma previsão de um cenário futuro, considerando os padrões das respostas de lotes anteriores nas mesmas condições de produção. Na construção deste cenário futuro, são utilizadas ferramentas de predição matemática, com modelos de regressão que podem ser utilizados em processo de aprendizado de máquina (ML), tornando os modelos cada vez mais robustos à medida que são alimentados com mais informações validadas pelo sistema. Assim, se verificamos que o lote apresenta baixo peso corporal, com desuniformidade de maturidade sexual, e estamos no outono, podemos esperar baixa produtividade de ovos, com atrasos na idade de chegada ao pico de produção e possivelmente ovos menores que o padrão da linhagem.
E por fim, análises prescritivas que nos ajudam a decidir o que fazer agora, diante do cenário atual e futuro. Mudanças específicas no programa alimentar e de luz, por exemplo, poderiam ser possíveis alternativas para mitigar os problemas descritos no exemplo acima.
Na ordem de grandeza do potencial de criação de valor, temos as análises de maior complexidade, representando as maiores possibilidades de ganho.
Várias são as áreas onde a exploração inteligente da base de dados pode gerar valor às atividades das empresas avícolas. Seguem algumas delas:
A cultura das “data driven companies” (empresas orientadas por dados) não é invenção recente. Conhecemos a história de sucesso das empresas que seguiram as orientações de William Edwards Deming, renomado estatístico, professor, consultor e autor que teve um impacto profundo na gestão de qualidade e nos processos industriais ao longo do século XX. Até sua morte, em 1993, Deming continuou a ensinar, consultar e escrever sobre gestão de qualidade e métodos estatísticos. Seu legado perdura através das organizações que adotam seus princípios, como o PDCA (Plan, Do, Check, Act), também conhecido como ciclo de Deming, e sua abordagem sistemática para melhorar a qualidade e eficiência dos processos. Deming é lembrado não apenas como um estatístico brilhante, mas como alguém que transformou profundamente a maneira como o mundo empresarial encara a qualidade e a gestão. Suas frases continuam atuais como nunca:
Desde a publicação dos postulados de Deming, as ferramentas de análises de dados evoluíram enormemente, facilitando o processamento das bases de dados gigantescas que temos atualmente nas empresas avícolas. Assim, devemos zelar pela qualidade destas bases brutas de dados e sobretudo transformá-las em informações acionáveis que resultam em melhorias na eficiência, qualidade, conformidade e lucratividade na atividade de produção animal. Sendo um recurso estratégico, pode proporcionar benefícios substanciais para os produtores e para a indústria de proteína animal como um todo.
Assine agora a melhor revista técnica sobre avicultura
AUTORES
Nivalenol, uma micotoxina emergente que aumenta a complexidade do controle do desoxinivalenol (DON)
Augusto HeckEstratégias nutricionais para fertilidade de machos reprodutores
Brunna GarciaSaúde intestinal – parasitoses internas e seu desafio na produção em sistemas alternativos
Equipe Técnica H&NManter o atual status sanitário, equilíbrio nos custos de produção e sustentabilidade serão decisivos para a avicultura brasileira em 2025
Paulo TeixeiraVacinação contra Salmonella em aves de postura comercial e a relação com índices zootécnicos
Daniela Duarte de OliveiraA influência da dieta maternal sobre o desempenho de frangos de corte
Vinicius Santos MouraÁcidos orgânicos no período de jejum pré-abate de frangos. Uma estratégia de suporte para diminuir as contaminações por enteropatógenos
Fabrizio Matté Luiz Eduardo Takano Patrick Iury RoieskiEstratégia nutricional para melhor qualidade de casca de ovos: uso de minerais orgânicos
Equipe Técnica BiochemImportância dos pesos iniciais para o desempenho dos frangos de corte
José Luis Januário Lucas Volnei SchneiderRecomendações técnicas para sanitizar ovos incubáveis de galinha
Dr. Vinícius Machado dos Santos Gabriel da Silva OliveiraQual o melhor plano nutricional para codornas europeias?
Adiel Vieira de Lima Aline Beatriz Rodrigues Dr. Fernando Perazzo Matheus Ramalho de Lima Paloma Eduarda Lopes de SouzaPerspectivas de recordes para a avicultura brasileira
Ricardo SantinArtrite e suas causas multifatoriais em frangos de corte – Parte 2
Cláudia Balzan Eduarda da SilvaCobre e suas funções em dieta das galinhas poedeiras: vantagens da forma quelatada
Tatiana Carlesso dos Santos Vinício dos Santos CardosoMachos reprodutores: como obter bons indicadores de fertilidade na fase de produção
Cidimar Trevisan Eduardo Kohl Marcel PachecoModelagem matemática com a equação de Gompertz e suas aplicações no crescimento de frangos de corte
Juan Gabriel Espino