No hay términos de la taxonomía "paises" asociados a este post.
For many years, the commercial incubation industry has relied almost entirely on the multi-stage (many loads) incubation methods, and with good results. The concept of thermal interaction efficiency between endothermic and exothermic eggs, as well as its ease of use, has made this the ideal solution.
However, as chicken consumption grew worldwide and the poultry industry became intensive, it became clear that the multi-stage method could not meet the level of biosecurity required by the modern market.
Furthermore, the academic world clearly demonstrated that multiple-stage incubation was unable to provide optimal conditions for the developing embryo.
For a time, many publications and articles theorized about the potential of a single-stage (1 loading) incubation as a solution to both biosecurity issues and providing optimal conditions required by the embryo.
However, the first single-stage methodologies posed difficulties in obtaining the same results as their multi-stage counterparts.
The challenge of single-stage, for both commercial incubator manufacturers and academics, was to identify the ideal conditions for the embryo and create an incubator that could generate such conditions on a large scale.
It was almost inevitable that during this period there would be a debate between supporters of multi-stage and single-stage, but today it cannot be doubted that a modern well-managed single-stage hatchery can produce results - both pre and post-hatch — superior to the best possible results in a multi-stage hatchery.
The following chart shows the optimal ranges for the developing embryo through key parameters such as temperature, humidity, and CO 2.
TEMPERATURE
As the main parameter, it is more accurately described as the absorption and dissipation of energy produced through heat exchange. Many academic studies and commercial trials have shown how precise temperature control - which cannot be achieved in a multi-stage environment - positively and significantly affects both chick quality and all aspects of post-hatch performance.
Graph 1. Variable requirements of the hatching egg depending on the incubation period
Subscribe now to the poultry technical magazine
AUTHORS
A Summary of Learnings From the 49th Incubation & Fertility Research Group (IFRG) Meeting
Edgar O. Oviedo-RondónPoultry is Good, People Should Know It
Nicolò CinottiChick Quality – Part I
H&N Technical TeamA Signal Light Feeding Program for Breeder Flocks
Chance Bryant - Cobb-Vantress LLCAdvancements in Poultry Salmonella Vaccine Strategies: Balancing Safety and Immunogenicity
Santiago Uribe-DiazHow Can Poultry Nutrition be Optimized to Seek Profitability and Sustainability?
Edgar O. Oviedo-RondónEffects of Chronic Stress and Intestinal Inflammation on Commercial Poultry Health and Performance: Part II
Guillermo TellezAntioxidants in Layer Feed
Christine LaganáThe Reasons Why the World is Moving to Community Nests
Winfridus BakkerFrom Broiler Processing: Preparing to Feed the World Nutritionally!
Eduardo Cervantes LópezFeathers, Fans, and Fahrenheit: The Ultimate Chick Comfort Guide!
Udaykumar MudbakheDepression, Air Speed and Path of Incoming Air
Brian Fairchild Michael Czarick